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1. Provide a few sentences summarizing the method illustrated by the case study. 

 
The application of epidemiological or observational data to dose-response evaluations in risk 
assessment requires that there is sufficient proof that the chemical of interest caused the 
relevant adverse effect. However, because epidemiological studies are associational, they 
cannot prove causation. The following case study explores the question of whether we can 
use a hypothesis-testing paradigm for evaluating data from epidemiology studies to better 
judge whether the study results are likely to represent a causal relationship. The case 
describes investigating patterns in the epidemiology results based on: 1) exposure and 
outcome variability; 2) specificity of the health effect; 3) exposure concentration (i.e. dose-
response); and 4) severity of the health effect. First, we interrogated the literature and 
conducted simple simulation studies to ensure that the patterns were conceptually sound and 
could appropriately be applied to epidemiology study results. This step revealed that 
exposure and/or outcome variability may not provide a consistent pattern of epidemiology 
study results, depending on the complexity of the analysis. The next question was whether 
these patterns can actually be observed in epidemiology studies and whether they 
appropriately correlate with the final causal conclusion. If these patterns are not consistent 
with causality, then the pressing question becomes: why not? We tested for the presence of 
patterns of dose-response and outcome specificity using a positive control scenario (cigarette 
smoking and lung cancer), and a negative control scenario (vitamin supplementation and 
cancer). We found that 6 positive control studies confirm that two of our hypothesis-testing 
patterns (dose-response and outcome specificity) can be found in a known causal 
relationship. The 9 negative control studies demonstrated a lack of consistent pattern for 
dose-response or outcome specificity for three of the four investigated nutrient-outcome 
pairs. These results show promise for using these patterns to identify appropriate causal 
conclusions, but further work is required to determine the presence of dose-response and 
outcome specificity patterns for one of the negative control nutrient-outcome pairs. 
 
 

2. Describe the problem formulation(s) the case study is designed to address.  How is the 
method described in the case useful for addressing the problem formulation?  
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Epidemiology or observational studies provide a crucial piece of information in a risk 
assessment – that is, information about how a chemical affects human beings. In some cases, 
these studies allow investigation of populations and chemical concentrations that otherwise 
would have no available information – such as vulnerable populations, and with lower 
exposure concentrations. They are also conducted outside of controlled environments, 
providing information that could be more relevant to actual human exposure. Unfortunately, 
the application of these studies for risk assessment purposes – either for hazard assessment or 
dose-response – requires an answer to the question: did the chemical cause the health effect? 
This case study investigates a method that may help address that question.  
 
This case study addresses the question of causality through the application of a hypothesis-
testing paradigm that is applied to the epidemiology literature available for a specific 
chemical and health endpoint. The concept is that, if a true causal association exists between 
a chemical exposure and a health effect, then certain patterns of results may be found, based 
on:  

1) Exposure and outcome variability;  
2) Specificity of the health effect;  
3) Exposure concentration (i.e. dose-response); and  
4) Severity of the health effect. 

In this work, we conducted a conceptual evaluation of each of these patterns based on the 
literature and simulation studies, and then we tested them on positive and negative control 
epidemiology study results. The purpose of using positive and negative controls is to see if 
these patterns could be used to predict the ultimate causal conclusions from these 
associational studies – i.e. were the patterns present for relationships that turned out to be 
causal, and not present for relationships that turned out not to be causal. 
 
Concept and Simulation Studies 
 
Exposure and Outcome Variability 
 
The hypothesis: It has often been stated that when there is an increase in the random 
variability or mis-classification of the exposure, then the effect estimate will be attenuated 
(aka biased towards the null) (Hausman, 2001). There are two major types of exposure error: 
classical and Berkson (Zeger et al., 2000). With classical error the exposure estimate varies 
randomly around the true value and has a greater variation than the true value (e.g. 
instrument measurement error). For Berkson error the true value varies randomly around the 
estimate and has greater variation than the estimated values (e.g. an exposure estimate that is 
based on an average of many instrument measurements). In a simple system classical error is 
expected to attenuate the risk estimate, whereas Berkson error should not bias the effect 
estimate but will increase its variability. Figure 1 shows a simple simulation study of data 
with and without random variability in the x (exposure) variable, demonstrating a decrease in 
the slope of the line (from 1.05 to 0.83) with increased variability. 
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Figure 1. Decreased slope of relationship between exposure and outcome with increased 
variability in the exposure variable. 
 
Therefore, in general, one would hypothesize that in two similar studies, the study with the 
more precise exposure measurement should have a higher effect estimate. Further 
investigation into the literature demonstrates that the reality is a bit more complicated. For 
example, in a simulation study Szpiro et al., (2011) found that the above hypothesis is 
generally true (better exposure specification led to narrower confidence intervals and higher 
effect estimates). However, they also found that the health effect estimate was not changed, 
but the confidence intervals were narrower, in models with mis-specified vs correctly 
specified exposures where a missing covariate has less variability than other covariates. 
Further, studies have shown that classical error can bias effect estimates towards the null and 
Berkson error can widen confidence intervals in a simple, single pollutant model where (1) 
the concentration-response is genuinely linear (Fuller, 1987), (2) measured concentrations are 
good surrogates for personal exposure, and (3) differences between the measured and the 
personal exposures are constant (Zeger et al., 2000). Further, multiple pollutants are often 
modeled to consider confounding effects, but classical error using multiple linear regression 
models can bias towards or away from the null (Zeger et al., 2000) because of the interplay 
between interpollutant correlations and the measurement error for each pollutant (Carrothers 
and Evans, 2000). Many studies have been conducted that show that this relationship is 
actually quite complicated, and unless the study has a very simple, one-variable linear 
analysis (Brakenhoff et al., 2018; Hausman, 2001; Jurek et al., 2008, 2005; Loken and 
Gelman, 2017), one should not make an assumption of effect estimate attenuation with 
increasing exposure error. 
 
In contrast to exposure measurement error, in a simple system outcome mismeasurement will 
not attenuate the effect estimate (see simulation in Figure 2) but will increase the uncertainty 
around the estimate (Hausman, 2001). However, if there is a limitation on the outcome, such 
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as the use of a logit or probit estimation (where the outcome can only be zero or one), then 
the effect estimate can be biased or show different patterns with increasing error.  

 
Figure 2. No change in slope of relationship between exposure and outcome with increased 
variability in the outcome variable in a simple linear regression. 
 
These studies demonstrate that the effect of outcome or exposure error on an effect estimate 
is not necessarily simple to predict. Therefore, we did not use outcome or exposure error as a 
predictor in our hypothesis test of causality of an epidemiological association. 
 
Outcome Specificity 
 
The hypothesis: Specific health endpoints that are causally related to the exposure should 
have greater effect estimates than more general endpoints that include both causally-related 
and non-causally-related endpoints. For example, if an agent increases liver cancer 
specifically, then the effect estimate for liver cancer should be higher than the effect estimate 
for all cancers combined. The principle here is a straight forward signal-to-noise problem. If 
there is only one causal relationship in a subset of a dataset, but many other data points are 
included that are not causally related to the exposure, then there will be a diminishment of 
the signal from the subset of data. This is demonstrated by a simulation study in Figure 3 – 
showing both a clean dataset (A), and a dataset with additional error in the variables (B). 
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Figure 3. Decrease in slope of relationship between exposure and outcome when an 
unrelated outcome is included in the analysis of either clean data (A) or data with error in the 
exposure and outcome variables (B). 
 
Based on the simulation studies, several patterns can be seen in the data: 

 Added exposure error or outcome error doesn’t change the difference in the effect 
estimate generated using total versus specific outcomes 

 Having a small effect estimate does not seem to decrease the difference in the effect 
estimate generated using total versus specific outcomes 

 The higher the number of non-specific outcome endpoints, the greater the difference 
between specific and non-specific effect estimates  

 All these patterns are true for both linear and log-linear regression analyses 
 
For our hypothesis-testing analysis, we would look for studies that investigate both more and 
less specific endpoints in the same group (e.g. all cancer and lung cancer, all mortality and 
CVD mortality, etc). Based on the specificity hypothesis, we would expect that if a specific 
endpoint is genuinely causally related to the exposure, that it should have a higher effect 
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estimate compared to the larger, less specific endpoint group (unless we expect all the effects 
in the less specific endpoint group to be causally related to the exposure). In addition, the less 
common the specific outcome, the greater the expected differential compared to the effect 
estimate for the larger endpoint group. 
 
Dose (Exposure) - Response 
 
The hypothesis: Based on toxicological theory, higher exposure concentrations should 
produce greater effect estimates. Often epidemiology studies present a single effect estimate 
(a slope, relative risk, odds ratio, hazard ratio, etc) to represent the relationship between 
exposure and outcome. From a dose-response (or exposure-response) standpoint, there are 
several ways to interpret this: 

 If the effect estimate is statistically significant, this estimate demonstrates the 
presence of a dose-response between exposure and outcome 

 In the absence of the primary data, dose-response cannot be assessed because the 
model assumes a certain shape and a constant increase in outcome with dose (the 
model or study does not necessarily test whether this assumption is valid for the 
relationship between the exposure and the outcome) 

One way to test for the presence of a dose (exposure)-response is to look at categorical 
results – a dose (exposure)-response would demonstrate an increasing effect estimate with 
increasing dose, relative to a single reference group. As shown in our simulation studies, this 
relationship is true for both linear and log-linear relationships, and with exposure and/or 
outcome error in the data. 
 
 

 
Figure 4. Clear exposure-response relationship in quintiles analysis based on data with an 
underlying exposure response. Blue dots are the continuous data (with the equation for the 
relationship), orange squares are the categorical data points showing increasing effect 
compared to the first quintile. 
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For our hypothesis-testing analysis, we would look for studies that investigate categorical 
dose or exposure-response for a single endpoint. Based on the dose-response hypothesis, we 
would expect increasing effect estimates for increasing dose, when compared to a single 
reference group. 

 
Outcome Severity 
 
The hypothesis: Based on toxicological theory, we expect that higher exposure 
concentrations should produce more severe health effects than lower exposure 
concentrations; and that at the same exposure concentrations we should observe larger and 
less variable effect estimates for less severe health endpoints compared to more severe health 
endpoints. Based on this theory, for linear and log-linear relationships without modeled 
thresholds, the slope of the relationship (and therefore the hazard ratio or relative risk) would 
be expected to be higher for less severe effects compared to more severe effects. This theory 
is based on the concept of the risk of an effect in the population. For example, let’s say that at 
100 units of exposure, a low severity effect has a risk of 0.5, a moderately severe effect has a 
risk of 0.3, and a highly severe effect has a risk of 0.1, and that for 0 units of exposure there 
is 0 risk. The slopes of these lines would be 0.005, 0.003, and 0.001, respectively. 
We confirmed this concept with simple simulation studies as shown in Figure 5. The 
relationship holds true with random error incorporated into the exposure or outcome 
variables. Because this concept is based on the probability of an effect in the population, the 
severity hypothesis may not apply to case-control studies (that generate odds and odds ratios) 
because these studies do not provide probability information about the total population, just 
for the case and control groups. 
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Figure 5. Higher slopes of effect with decreasing outcome severity in the same exposure 
concentration range. Underlying probabilities of effect in the simulation were per 100 units: 
0.5 for low severity, 0.3 for moderate severity, and 0.1 for high severity.  
 
For our hypothesis-testing analysis, we would look for studies that investigate different 
severities of health endpoints (that occur in the same health effect pathway, such as asthma 
exacerbations and asthma hospital admissions). Based on the severity hypothesis, we would 
expect increasing effect estimates for less severe endpoints, compared to more severe 
endpoints. 
 
Positive Control: Smoking and Lung Cancer 
 
The positive control for this case study is cigarette smoking and lung cancer. The causal 
relationship between smoking and lung cancer has been definitively established, which 
makes it an excellent positive control to test for the presence of our hypothesized patterns in 
epidemiological data. 
 
We looked at patterns of dose-response and/or outcome specificity in 6 studies. These studies 
included cohort and case-control studies that investigated the associations between smoking 
and cancer.  
 
For dose-response, the data from three studies (Freedman et al., 2008; Powell et al., 2013; 
Remen et al., 2018), using two different risk metrics (odds ratio, hazard ratio), as well as with 
multiple types of dose metrics, demonstrated clear dose-response of smoking with lung 
cancer (Table 1). Using the data from The Health Improvement Network (THIN), a UK 
medical research database, a data set comprising 12,121 incident cases of lung cancer and 
48,216 age-, sex-, and general practice-matched control subjects, Powell et al. (2013) studied 
the association between smoking quantity and lung cancer in men and women. Conditional 
logistic regression was used to calculate odds ratios for lung cancer according to highest-ever 
quantity smoked in men and women separately. An increase in smoking quantity was 
associated with an increase of risk estimates regardless of the sex of the subjects. Similarly, 
Remen et al. (2018) conducted a case-control study to provide new data on risk of lung 
cancer in relation to various metrics of smoking history. This study included 1,203 lung 
cancer cases and 1,513 age-, gender-, and residential area-matched controls residing in 
Montreal and its surrounding suburbs. Regardless of the smoking metrics used, increase in 
smoking quantity was associated with an increase in the lung cancer risk estimate. Similar 
findings were reported by Freedman et al. (2008), where the authors investigated 
susceptibility of men and women to cigarette smoking by comparing lung carcinoma 
incidence rates by stratum from the National Institutes of Health – AARP cohort. The study 
included 279,214 men and 184,263 women from eight US states aged 50 to 71 years. 
Smoking was associated with increased lung carcinoma risk in both men and women.   
 
Three additional studies (Lewer et al., 2017; Ordóñez-Mena et al., 2016; Thun et al., 2013) 
provided information about outcome specificity, and clearly demonstrated a greater slope of 
response for the association between smoking and lung cancer incidence or mortality (or 
chronic obstructive pulmonary disease, or head and neck cancer), compared to the 
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association between smoking and total cancer incidence or total mortality (Table 2). Lewer et 
al. (2017) tested the hypothesis that smoking confers a greater mortality risk for individuals 
in low socioeconomic groups using a cohort of 18,479 adults drawn from the English 
Longitudinal Study of Aging (ELSA). Out of 5,050 deaths, 310 were due to lung cancer and 
274 deaths were due to COPD. Thun et al. (2013) studied the temporal trends in mortality 
associated with cigarette smoking across three time periods; 1959-1965, 1982-1988, and 
2000-2010, comparing absolute and relative risks according to sex and self-reported smoking 
status in two historical cohort studies and in five pooled contemporary cohort studies. The 
study concluded that the risk of death from cigarette smoking continues to increase among 
women and the increased risks are nearly identical for men and women in the contemporary 
cohort as compared with persons who have never smoked. Ordóñez-Mena et al. (2016) 
comprised a meta-analysis of 19 population-based prospective cohort studies with individual 
data for 897,021 European and American adults. The authors estimated rate advancement 
periods (RAPs) for the association of smoking exposure with total and site-specific (lung, 
breast, colorectal, prostate, gastric, head and neck, and pancreatic cancer) cancer incidence 
and mortality. This investigation showed that smoking considerably advances the risk of 
developing and dying from cancer. 
 
In addition, one of the studies (Ordóñez-Mena et al., 2016) provides information that can be 
used to test the severity hypothesis: i.e. that more severe endpoints would have lesser 
associations than less severe endpoints, at the same exposure concentrations. If we consider 
cancer incidence to be a less severe, but related, endpoint to cancer mortality, then we would 
expect a greater association between smoking and incidence, than between smoking and 
mortality. This pattern is seen with lung cancer, but not with total cancers or head-and-neck 
cancers. This hypothesis-testing endpoint will need to be investigated further, with other 
studies. 
 
The 6 available studies confirm that two of our hypothesis-testing patterns can be found in a 
known causal relationship. 

 
Table 1. Summary of Dose-Response Analysis of Studies Investigating the Association 
between Smoking and Lung Cancer  

Exposure 
Variable 

Ref Quantile Quantile 2 Quantile 3 Quantile 4 Quantile 5 

Powell et al., 2013, Lung Cancer, Odds Ratios (95% CI)  

Smoking 
Quantity 

Never Light Moderate Heavy  
1 9.32 (8.48-

10.25) 
11.78 (10.79-

12.87) 
15.02 (13.69-

16.48) 
 

Remen et al., 2018, Lung Cancer in Women, Odds Ratios (95% CI) 

Duration of 
Smoking 

(yrs) 

Never (0) 0-20 20-30 30-40 > 40 
1 1.51 (0.74-

3.04) 
6.37 (3.55-

11.41) 
13.64 (8.19-

22.74) 
28.79 (16.86-

49.16) 

Intensity of 0 0-20 20-30 > 30  
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Smoking 
(cig/day) 

1 6.05(3.70-
9.90) 

19.4(11.81-
31.86) 

18.2(10.10-
32.80) 

 

Pack-years 

0 0-20 20-40 40-60 > 60 
1 2.04 (1.11-

3.74) 
8.66 (5.10-

14.68) 
25.48 (15.08-

43.04) 
37.39 (19.79-

70.62) 

Cumulative 
Smoking 

Index (CSI)a 

0 0 – 1 1 – 2 > 2  

1 
1.25 (0.62-

2.51) 
11.98 (7.32-

19.62) 
29.66 (17.67-

49.80) 
 

Freedman et al., 2008, Lung Cancer in Current Smokers, Hazard Ratios (95% CI) 
Intensity of 
Smoking 

(cig/day) in 
Men 

Never (0) 1-10 11-20 21-30 31-40 

1 
20.7 (16.3- 

26.3) 
30.5 (24.6-

37.9) 
35.9 (28.7- 

44.8) 
42.6 (33.8-

53.8) 

Intensity of 
Smoking 

(cig/day) in 
Women 

1 
13.4 (10.9-

16.5) 
22.5 (18.8-

27.1) 
25.2 (20.5-

31.0) 
40.7 (32.3-

51.2) 

aCumulative Smoking Index (CSI) takes into consideration duration of smoking, time since 
cessation, and daily amount of cigarettes smoked. 
 

Table 2. Summary of Outcome Specificity Analysis of Studies Investigating the Association 
between Smoking and Mortality  

Exposure 
Variable 

Less 
Specific 

Outcome 

More Specific Outcomes 

Lewer et al., 2017, Mortality, Ratio of age-adjusted mortality rate per 100,000 person years 
in smokers : never-smokers 

 
Never 

Smoker 
Ex-

Smoker 
Current 
Smoker 

   

All-Cause 
Mortality 

1 1.33 1.87    

No. Cases 2059 2748 3842    
Lung 

Cancer or 
COPD 

1 5.17 13.25    

No. Cases 60 310 795    
Thun et al., 2013, Mortality, Relative Risk of mortality among those 55-years or older, for 
current smokers compared to never smokers, 2000-2010 (95% CI) 

 
All Cause 
Mortality 

Lung 
Cancer  

COPD    

Women 
2.76 (2.69 -

2.84) 
25.66 

(23.17-
28.40)  

22.35 
(19.55-
25.55) 
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No. Cases 62965 4785 3034    

Men 
2.80 (2.72-

2.88) 
24.97 

(22.20-
28.09) 

25.61 
(21.68-
30.25) 

   

No. Cases 73800 6635 3478    
Ordóñez-Mena et al., 2016, Cancer Incidence or Mortality, Hazard ratio of current smokers 
compared to never-smokers (95% CI) 

 
Total 

Cancer 
Lung 

Cancer  
Head and 

Neck 
Cancer 

Colorectal 
Cancer 

Breast 
Cancer 

Prostate 
Cancer 

Cancer 
Incidence 

1.44 (1.28- 
1.63) 

13.1 (9.90- 
17.3) 

2.89 (1.98-
4.21) 

1.20 (1.07-
1.34) 

1.07 (1.00-
1.15) 

0.81 (0.72-
0.91) 

No. Cases 26007 6333 1051 2064 2536 3701 
Cancer 

Mortality 
2.19 (1.83-

2.63) 
11.5 (8.21-

16.1) 
3.74 (2.38-

5.89) 
1.35 (1.16-

1.58) 
1.28 (1.06-

1.55) 
1.26 (0.97-

1.64) 
No. Cases 13450 6165 359 912 466 589 
 
Negative Control: Dietary Constituents and Cancer 
 
The negative control for this case study is the association observed between various dietary 
constituents in the serum and cancer incidence or mortality. Multiple epidemiology studies 
conducted in the 1980s and 1990s demonstrated associations between, among others, β-
carotene serum concentrations and lung cancer, retinol (vitamin A) and lung cancer, and α-
tocopherol (vitamin E) and lung and prostate cancer. 
 
Subsequently the relationship between β-carotene and retinol and lung cancer was tested in 
the Beta-Carotene and Retinol Efficacy Trial (CARET), a randomized, controlled clinical 
trial of 18,314 men and women (Omenn et al., 1996). The subjects in this trial received either 
a placebo or a combination of 30 mg β-carotene plus 25000 IU retinyl palmitate (vitamin A). 
The trial was terminated 21 months earlier than expected because it showed increased risk of 
lung cancer incidence and mortality among the intervention group. Similarly, the Alpha-
Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study enrolled 29,133 male smokers 
into a randomized, double-blind, placebo-controlled primary prevention trial to determine 
whether supplementation with α-tocopherol (vitamin E), β-carotene, or both, would reduce 
the incidence of lung cancers or other cancers (Alpha-Tocopherol, 1994). α-Tocopherol 
supplementation did not have any effect on lung cancers but showed a decrease in prostate 
cancer (later shown not to be a causal relationship in the SELECT trial, Klein et al., 2011). 
As with the CARET trial, β-carotene supplemented-men had an increased rate of lung cancer 
incidence. 
 
We looked at patterns of dose-response and/or outcome specificity in 9 studies. These studies 
included cohort and case-control studies that investigated the associations between β-
carotene, retinol, and/or α-tocopherol and cancer incidence or mortality. The studies largely 
used a matched case-control design with matching for sex, age, smoking status, and a variety 
of other factors. 
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Dose-Response Patterns: 
 β-Carotene: serum concentration showed a positive dose-response with lung cancer in 

some, but not all, of the studies (Table 3).  
 Retinol: the two studies of lung cancer and retinol did not show evidence of dose-

response (Table 4).  
 α-Tocopherol: there was marginal evidence for a dose-response with α-tocopherol 

and lung cancer, but not with prostate cancer (Table 5). 
 
Outcome Specificity Patterns: 

 β-Carotene: most of the studies show a greater slope of association between serum β-
carotene and lung cancer, compared to the slope between serum β-carotene and total 
cancer (Table 6).  

 Retinol: there is conflicting evidence of a greater slope of association between serum 
retinol and lung cancer, compared to the slope between serum retinol and total cancer 
(Table 7).  

 α-Tocopherol: there is conflicting evidence of a greater slope of association between 
serum α-tocopherol and lung or prostate cancer, compared to the slope between serum 
α-tocopherol and total cancer (Table 8).  

 
Data from these observational studies demonstrates that there is not a consistent pattern of dose-
response or outcome specificity for the association between retinol and lung cancer, or α-
tocopherol and either lung or prostate cancer. This lack of pattern was a likely clue that there was 
not a causal relationship between these vitamins and cancer. In contrast, there is some evidence 
for patterns of dose-response and outcome specificity between lower serum β-carotene 
concentrations and increased lung cancer. This is particularly interesting given results from 
multiple randomized controlled trials demonstrating the presence of the opposite relationship. 
This will require further study. 

 
Table 3. Summary of Dose-Response Analysis of Studies Investigating the Association 
between Beta-Carotene and Cancer (lowest concentration hypothesized to be highest risk) 

Exposure 
Variable 

Ref 
Quantile 

Quantile 2 Quantile 3 Quantile 4 Quantile 5 Trend 
p-value 

Comstock et al., 1991, Lung Cancer Incidence, Odds Ratio  
Serum 

Concentration 
1st 

(Highest) 
2nd 3rd 4th 5th 

(Lowest) 
Trend 

 
 1 1.2 1.8 1.7 2.2 0.04 

Connett et al., 1989, Lung Cancer Deaths, Odds Ratio  
Serum 

Concentration 
1st 

(Highest) 
2nd 3rd 4th 5th 

(Lowest) 
Trend 

 
Β-Carotene 1 2.17 2.72 1.6 2.32 0.08 

Nomura et al., 1985, Lung Cancer Incidence, Odds Ratio (95% CI)  
Serum 

Concentration 
1st 

(Highest) 
2nd 3rd 4th 5th 

(Lowest) 
Trend 

 

Unadjusted 
estimate 

1 1.7 (0.6-
4.7) 

1.5 (0.5 - 
4.1) 

2.9 (1.1- 
7.3) 

3.4 (1.4 - 
8.4) 

0.004 
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Adjusted 
estimatea 

1 1.5 (0.5 - 
4.1) 

1.2 (0.4 - 
3.5) 

2.4 (0.9 - 
6.2) 

2.2 (0.8 - 
6) 

0.04 

a adjusted for age and smoking using multiple logistic regression 
 
Table 4. Summary of Dose-Response Analysis of Studies Investigating the Association 
between Vitamin A/Retinol and Cancer (lowest concentration hypothesized to be highest 
risk) 

Exposure 
Variable 

Ref 
Quantile 

Quantile 2 Quantile 
3 

Quantile 
4 

Quantile 
5 

Trend 
p-value 

Friedman et al., 1986, Lung Cancer Incidence, Odds Ratio 
Serum 

Concentration 
1st 

(Highest) 
2nd 3rd 4th 5th 

(Lowest) 
Trend 

 
Unmatched 

analysis 
1 1.4 1.1 0.9 1.2  

Matched 
analysis 

1 1.3 1.1 0.9 1.2  

Menkes et al., 1986, Lung Cancer Incidence, Odds Ratio  

Serum 
Concentration 

1st 
(Highest) 

2nd 3rd 4th 5th 
(Lowest) 

Trend 
 

1 1.62 0.73 0.92 1.13 0.68 
 
Table 5. Summary of Dose-Response Analysis of Studies Investigating the Association 
between Vitamin E/α-Tocopherol and Cancer (lowest concentration hypothesized to be 
highest risk) 

Exposure 
Variable 

Ref 
Quantile 

Quantile 2 Quantile 
3 

Quantile 
4 

Quantile 
5 

Trend 
p-value 

Comstock et al., 1991, Cancer Incidence, Odds Ratio  
Serum 

Concentration 
1st 

(Highest) 
2nd 3rd 4th 5th 

(Lowest) 
Trend 

 
Lung 1 1.3 2.2 1.9 2.5 0.04 

Prostate 1 1.6 1.4 1.1  0.94 
Menkes et al., 1986, Lung Cancer Incidence, Odds Ratio  

Serum 
Concentration 

1st 
(Highest) 

2nd 3rd 4th 5th 
(Lowest) 

Trend 
 

1 1.32 2.19 1.87 2.48 0.04 
 
 

Table 6. Summary of Outcome Specificity Analysis of Studies Investigating the Association 
between Beta-Carotene and Cancer  

Exposure 
Variable 

Less 
Specific 

Outcome 

More Specific Outcomes 

Wald et al., 1988, Cancer Incidence, Percent Difference in Serum Concentration between 
Cases and Controls (Std Error) 

Serum All Lung Colorectal Stomach Bladder CNS 
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Concentration Cancer 
- 10% (4) - 22% (8) - 11% (10) -27 % (17) - 9% (20) - 10% 

(15) 
No. Cases 271 50 30 13 15 17 

Connett et al., 1989, Cancer Deaths, Mean Difference in Serum Concentration between 
Cases and Controls  

Serum 
Concentration 

(μg/dL) 

All 
Cancer 

Lung Colon GI Tract Bladder 
& Kidney 

 

Β-Carotene -0.6 -2.70 -1 0.6 2  
No. Cases 156 66 14 28 7  

Knekt et al., 1990, Cancer Incidence, Mean Difference in Serum Concentration between 
Cases and Controls (Std Error) 

Serum 
Concentration 

(μg/L) 

All 
Cancer 

Lung Colon Rectum Stomach Prostate/ 
Breast 

Men -11.8 -17.2 -10.8 16 -7.4 -0.4 
No. Cases 453 144 6 15 48 37 
Women -7 -40 10.8 -37.3 27 -18.8 

No. Cases 313 8 13 22 28 67 
Willett et al., 1984, Cancer Incidence, Carotenoids, Mean Difference in Serum 
Concentration between Cases and Controls (Std Error) 

Serum 
Concentration 

(μg/L) 

All 
Cancer 

Lung Breast Prostate GI  

 8.2 (6.4) 9 (16.5) 8.9 (17.2) 4.3 (19.4) 10.5 (19.9)  
No. Cases 111 17 14 11 11  

 
Table 7. Summary of Outcome Specificity Analysis of Studies Investigating the Association 
between Vitamin A/Retinol and Cancer  

Exposure 
Variable 

Less 
Specific 

Outcome 

More Specific Outcomes 

Knekt et al., 1990, Cancer Incidence, Mean Difference in Serum Concentration between 
Cases and Controls (Std Error) 

Serum 
Concentration 

(μg/L) 

All 
Cancer 

Lung Colon Rectum Stomach Prostate/ 
Breast 

Men -22 -38 -93 -41 -19 16 
No. Cases 453 144 6 15 48 37 
Women -17 24 -25 -30 4 -22 

No. Cases 313 8 13 22 28 67 
Willett et al., 1984, Cancer Incidence, Mean Difference in Serum Concentration between 
Cases and Controls (Std Error) 

Serum All Lung Breast Prostate GI  
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Concentration 
(μg/L) 

Cancer 
-0.6 (2.5) 7.4 (6.3) 5.4 (6.6) 1.7 (7.5) -18.4 (7.7)  

No. Cases 111 17 14 11 11  
Connett et al., 1989, Cancer Deaths, Mean Difference in Serum Concentration between 
Cases and Controls  

Serum 
Concentration 

(μg/dL) 

All 
Cancer 

Lung     

-1 -3.1     
No. Cases 156 66     

 
Table 8. Summary of Outcome Specificity Analysis of Studies Investigating the Association 
between Vitamin E/α-Tocopherol and Cancer  

Exposure 
Variable 

Less 
Specific 

Outcome 

More Specific Outcomes 

Willett et al., 1984, Cancer Incidence, Mean Difference in Serum Concentration between 
Cases and Controls (Std Error) 

Serum 
Concentration 

(mg/dL) 

All 
Cancer 

Lung Breast Prostate GI  

-0.05 
(0.06) 

0.13 (0.15) -0.16 
(0.17) 

-0.09 
(0.19) 

-0.15 (0.2)  

No. Cases 111 17 14 11 11  
Connett et al., 1989, Cancer Deaths, Mean Difference in Serum Concentration between 
Cases and Controls  

Serum 
Concentration 

(mg/dL) 

All 
Cancer 

Lung     

0.03 -0.06     
No. Cases 156 66     

 
 
3. Comment on whether the method is general enough to be used directly, or if it can be 

extrapolated, for application to other chemicals and/or problem formulations.  Please 
explain why or why not.   

 
This method can be generalized to any chemical with enough epidemiological data available 
to test the above hypotheses of outcome severity, outcome specificity, and dose(exposure)-
response. This method is restricted to human or ecological health questions. 

 
4. Discuss the overall strengths and weaknesses of the method. 

 
Strengths:  

 Uses available epidemiology analyses 
 Provides a more objective method that utilizes many epidemiology study results to 

assess causality  
 Uses concepts that are grounded in statistics and toxicological theories to judge 

associations in epidemiology studies 
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Weaknesses:  
 Relies on the available data and appropriate comparative analyses having been 

conducted 
 Still not a definitive method for determining causality 
 Assumes certain reliable patterns in the mathematical relationships and models 
 Doesn’t consider the internal validity of the epidemiology studies – we may need to 

add a quality assessment such as is used in systematic review methods 
 

5. Outline the minimum data requirements and describe the types of data sets that are 
needed. 

 
The minimum dataset is an epidemiology study that assesses multiple endpoint severities and 
specificities, as well as dose-response, for a relationship between a potential causative factor 
and a health endpoint. The types of datasets needed are epidemiology study methods and 
results. The preference would be to have multiple complementary studies for this analysis. 
 

Does your case study: 
A. Describe the dose-response relationship in the dose range relevant to human 

exposure?  
 
Yes, the examples in the case study address dose-response in the range that is relevant to 
human exposure. 

 
B. Address human variability and sensitive populations?   
 
This case study does not specifically address sensitive populations, but it does address human 
variability with the considerations of outcome and exposure variance on the relationship 
between dose (exposure) and response. 

 
C. Address background exposures or responses?  
 
This case study does not address background exposures or responses. 

 
D. Address incorporation of existing biological understanding of the likely mode of 

action?  
 
As it currently stands, this case study does not incorporate existing biological understanding 
of the likely mode of action, but that is something that we would be very interested in 
discussing with the panelists. This case study does incorporate toxicological principles in the 
interpretation of epidemiology results. 

 
E. Address other extrapolations, if relevant – insufficient data, including duration 

extrapolations, interspecies extrapolation?  
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This case study does not address other extrapolations, such as insufficient data, duration 
extrapolations, or interspecies extrapolation. 

 
F. Address uncertainty?  
 
This case study attempts to address uncertainty by evaluating many analyses of the same 
question (i.e. many epidemiology studies investigating the relationship between a particular 
exposure and response). This will help to address uncertainty by using data generated in 
different populations, with different co-exposures, etc. This case study also addresses the 
uncertainty around the assumptions of the effects of exposure measurement error and 
outcome measurement error, and whether it is valid to assume that a certain error will bias an 
effect estimate in a particular direction. 

 
G. Allow the calculation of risk (probability of response for the endpoint of interest) in 

the exposed human population? 
 
This case study does not directly allow the calculation of risk in an exposed human 
population, but it does help risk assessors decide whether it is appropriate to calculate risk 
based on the epidemiology data. 

 
H. Work practically?  If the method still requires development, how close is it to 

practical implementation?  
 
The positive and negative controls provide evidence for the practical application of this case 
study. More work is required to test this idea before it is ready for practical implementation. 
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